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Abstract

This paper deals with a design of a control system
for a multipod robot based on CPG principle. Oscil-
lators are assigned at each leg and drive the periodic
motion of legs. The phase of CPG is controlled by the
signal of touch sensor which is mounted at the tip of
the leg. It is confirmed through numerical simulation
that the robot changes its gait pattern adaptively to
variances of the environment.

1 Introduction

A walking robot is a robot with legs composed of
links. Using the legs, the walking robot can move on
a rough terrain and approach many locations. Then,
research on a walking robot is proceeding actively1.
Currently, control of locomotion of a walking robot is
studied under the conditions that a desired gait pat-
tern is given. At that time, the difficulty of control of a
walking robot is to control of many elements according
to the specified gait pattern. In the future, a walking
robot is to carry out a task in the real world, where
the geometric and kinematic conditions of the environ-
ment are not structured. At that time, the difficulty
of control of a walking robot is not only to control of
many elements according to the specified gait pattern
but also to form a suitable gait pattern to a different
circumstance. A walking robot is required to realize
the real-time adaptability to a changing environment.

The walking motion of an animal seems to offer a
solution to the problem; During a walking, a lot of
joints and muscles are organized into a collective unit
to be controlled as if it had fewer degrees of freedom
but to retain the necessary flexibility for a changing

environment2. It is widely believed that animal lo-
comotion is generated and controlled, in part, by a
central pattern generator (CPG)3. The CPG is a neu-
ronal ensemble capable of producing rhythmic output
in the absence of sensory feedback or brain input. The
CPG, while not requiring external control for their ba-
sic operation, is highly sensitive to sensory feedback
and external control from the brain. Sensory and de-
scending systems are crucially involved in making the
animal locomotion adaptive and stable.

A considerable amount of research has been done
on design of a control system for walking robot which
enables to adapt to variances of the environment based
on the CPG principle4∼7. M.A.Lewis et al developed a
VLSI CPG Chip and using the chip, they implemented
experiments of control of an underactuated running
robotic leg; Periodic motion of the hip is driven by an
oscillator, and then by controlling phase of oscillator
using sensor signal, they established a stable running
motion of the leg4. K.Akimoto et al designed a loco-
motion controller for hexapod robot by using CPG5.
Oscillators, which are assigned for each leg, drive the
periodic motion of each leg. The phase of oscillator is
controlled by evaluating energy consumption of motors
at joints of the legs. By using this control system, they
realized a hexapod robot which can change the gait
pattern adaptively to the walking velocity. The au-
thors designed a control system for a quadruped robot
by using CPG principle6. Oscillators, which are as-
signed for each leg, drive the periodic motion of each
leg. The phase of oscillator is controlled by the signal
of touch sensor at the tip of the leg. We confirmed
through hardware experiment that the robot can walk
stably by changing its gait pattern adaptively to vari-
ances of the environment. In this paper, a control
system for a multipod robot based on CPG principle
is proposed. Oscillators are assigned at each leg and



they drive the periodic motion of legs. The phase of
oscillator is controlled by the signal of touch sensor at
the tip of the leg. Through numerical simulation, it
is confirmed that the robot changes its gait pattern
adaptively to variances of the environment.

2 Equations of Motion

Consider the multipod robot shown in Fig. 1, which
has five body modules and ten legs. Each leg is
composed of two links which are connected to each
other through a one degree of freedom (DOF) rota-
tional joint. Each leg is connected to the body mod-
ule through a one DOF rotational joint. The body
modules are connected to each other through a two
DOF rotational joint. The coordinate systems which
are fixed at an inertial space and the first body mod-
ule are defined as [a(−1)] = [a(−1)

1 , a
(−1)
2 , a

(−1)
3 ] and

[a(0)] = [a(0)
1 , a

(0)
2 , a

(0)
3 ], respectively. Axes a

(−1)
1

and a
(−1)
3 coincide with the nominal direction of loco-

motion and vertically upward direction, respectively.
Body modules are numbered from 1 to 5 and legs of
each module are labeled as leg 1 for the left one and leg
2 for the right one, as shown in Fig. 1. The joints of
each leg are numbered as joint 1 and 2 from the body
module toward the tip of the leg. The position vector
from the origin of [a(−1)] to the origin of [a(0)] is de-
noted by r(0) = [a(−1)]r(0). The angular velocity vec-
tor of [a(0)] to [a(−1)] is denoted by ω(0) = [a(0)]ω(0).
We define θ

(0)
i (i = 1, 2, 3) as the components of 1-

2-3 Euler angle from [a(−1)] to [a(0)]. We also define
θ
(i,j)
k as the joint angle of link k of leg j of module

i and θ
(j)
m (m = 1, 2) as the angles between the body

modules j and j − 1.

[a(−1)]

[a(0)]

Fig. 1: Schematic model of a multipod robot

The state variable is defined as follows;

qT =
[

r
(0)
m θ

(0)
m θ

(j)
l θ

(i,k)
l

]
(1)

i = 1, · · · , 5, j = 2, · · · , 5,

k, l = 1, 2, m = 1, 2, 3

Equations of motion for state variable q are derived
using Lagrange equations as follows;

Mq̈ + H(q, q̇) = G +
∑

(τ (i,j)
k ) + Λ (2)

where M is the generalized mass matrix and H(q, q̇) is
the nonlinear term which includes Coriolis forces and
centrifugal forces. G is the gravity term and

∑
(τ (i,j)

k )
is the input torque of the actuator at joint k of leg j of
module i. Λ is the reaction force from the ground at
the point where the tip of the leg makes contact. We
assume that there is no slip between the tips of the
legs and the ground.

3 Locomotion control

The architecture of the proposed control system is
shown in Fig. 2; The control system is composed of
leg motion controllers and a gait pattern controller.
The leg motion controllers drive all the joint actua-
tors of the legs so as to realize the desired motions
that are generated by the gait pattern controller. The
gait pattern controller involves non linear oscillators
corresponding to each leg. The gait pattern controller
receives the feedback signals from the touch sensors at
the tips of the legs. A gait pattern emerges through
modulation of the phases of the oscillators with the
feedback signals from the touch sensors. The gener-
ated gait pattern is given to the leg motion controller
as the commanded signal.

Gait pattern
controller

Leg motion
controller

Commanded
leg motion

Signal of the
touch sensor

Fig. 2: Architecture of the proposed controller



3.1 Design of gait

Oscillator (i, k) is assigned on leg k of module i. The
state of the oscillator (i, k) is expressed as follows;

z(i,k) = exp(j φ(i,k)) (3)

where z(i,k) is a complex variable representing the
state of the oscillator, φ(i,k) is the phase of the os-
cillator and j is the imaginary unit.

We design the nominal trajectories of the tips of
the legs as follows; We define the position of the tip of
the leg where the transition from the swinging stage to
the supporting stage as the anterior extreme position
(AEP) and the position where the transition from the
supporting stage to the swinging stage as the posterior
extreme position (PEP) and then define the nominal
PEP, r̂

(i,j)
eP and the nominal AEP, r̂

(i,j)
eA in the coor-

dinate system [a(i)] where the index ∗̂ indicates the
nominal value. We set the nominal trajectory for the
swinging stage, r̂

(i,j)
eF as a closed curve which involves

the points r̂
(i,j)
eA and r̂

(i,j)
eP , and the nominal trajectory

for the supporting stage, r̂
(i,j)
eS as a straight line which

also involves the points r̂
(i,j)
eA and r̂

(i,j)
eP . On the other

hand, the nominal phase dynamics of the oscillator is
defined as follows;

˙̂
φ

(i,j)

= ω (4)

The nominal phases at AEP and PEP are deter-
mined as follows;

φ̂(i,j) = φ̂
(i,j)
A at AEP, φ̂(i,j) = 0̂ at PEP (5)

The nominal trajectories r̂
(i,j)
eF and r̂

(i,j)
eS are given

as functions of the phase φ̂(i,j) of the oscillator as

r̂
(i,j)
eF = r̂

(i,j)
eF (φ̂(i,j)) (6)

r̂
(i,j)
eS = r̂

(i,j)
eS (φ̂(i,j)) (7)

Using these two trajectories alternatively we design
the nominal trajectory of the tip of the leg r̂

(i,j)
e (φ̂(i,j))

as follows( Fig. 3 );

r̂(i,j)
e (φ̂(i,j)) =




r̂
(i,j)
eF (φ̂(i,j)) 0 ≤ φ̂(i,j) < φ̂

(i,j)
A

r̂
(i,j)
eS (φ̂(i,j)) φ̂

(i,j)
A ≤ φ̂(i,j) < 2π

(8)
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Trajectory for
supporting stage

Trajectory of the tip
of the leg
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r̂
(i,j)
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AEP

r̂
(i,j)
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r̂
(i,j)
eP
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r̂
(i,j)
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Fig. 3: Nominal trajectory of the tip of the leg

The nominal duty ratio β̂(i,j) for leg j of module i
is defined to represent the ratio between the nominal
time for the supporting stage and the period of one
cycle of the nominal locomotion.

β̂(i,j) = 1 − φ̂
(i,j)
A

2π
(9)

The nominal strideŜ(i,j) of leg j of module i and the
nominal locomotion velocity v̂ are given as follows;

Ŝ(i,j) = r̂
(i,j)
eA − r̂

(i,j)
eP , v̂ =

Ŝ(i,j)

β̂(i,j)T̂
(10)

where, T̂ is the nominal time period for a locomo-
tion cycle.

The gait patterns are defined as the relationships
between motions of the legs. There are many gait pat-
terns of the multipod robot. Suppose that the motion
of legs of each module are in the same phase. One of
the typical gait patterns is the pattern in which all of
the phase relation between the legs of the neighboring
two module are same (gait pattern #1). This pattern
is called metachronal gait in the case of walking in-
sect. In this pattern, the wave of swing stages moves
from rear to front. Another typical gait pattern is a
pattern in which some of the legs moves in the same
phase (gait pattern #2). This pattern is called tripod
gait in the case of walking insect.

Figure 4 shows the gait pattern diagrams of gait
pattern #1 and #2 where the thick solid lines rep-
resent supporting stages. In general, each pattern is



represented by a corresponding matrix of phase differ-
ences Γii′,jj′ as follows;

φ(i′,j′) = φ(i,j) + Γii′,jj′ (11)

where Γii′,jj′ is a phase difference of oscillator (i, j)
and oscillator (i′, j′).
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Gait pattern #2
Fig. 4: Gait patterns

3.2 Control of gait

(i) Leg motion controller

The angle θ̂
(i,j)
k of joint k of leg j of module i is

derived from the trajectory r̂
(i,j)
e (φ̂(i,j)) and is written

as a function of phase φ̂(i,j) as follows;

θ̂
(i,j)
k = θ̂

(i,j)
k (φ̂(i,j)) (12)

The commanded torque at each joint of the leg is
obtained by using local PD feedback control as follows;

τ
(i,j)
k = K

(i,j)
Pk (θ̂(i,j)

k − θ
(i,j)
k ) + K

(i,j)
Dk ( ˙̂

θ
(i,j)

k − θ̇
(i,j)
k )(13)

(i = 1, · · · , 5, j, k = 1, 2)

where τ
(i,j)
k is the actuator torque at joint k of leg j

of module i, and K
(i,j)
Pk , K

(i,j)
Dk are the feedback gains,

the values of which are common to all joints in all legs.

(ii) Gait pattern controller

We design the phase dynamics of oscillator i as fol-
lows;

φ̇(i,j) = ω + g(i,j) (i = 1, · · · , 5, j = 1, 2) (14)

where g(i,j) is the term caused by the feedback signal
of the touch sensors of the legs.

Function g(i,j) is designed in the following way:
Suppose that φ

(i,j)
A is the phase of leg i at the instant

when leg i touches the ground. Similarly, r
(i,j)
eA is the

position of leg j of module i at that instance. When
leg i touches the ground, the following procedure is
undertaken.

1. Change the phase of the oscillator for leg j of
module i from φ

(i,j)
A to φ̂

(i,j)
A .

2. Alter the nominal trajectory of the tip of leg i

from the swinging trajectory r̂
(i,j)
eF to the support-

ing trajectory r̂
(i,j)
eS .

3. Replace parameter r̂
(i,j)
eA , that is one of the param-

eters of the nominal trajectory r̂
(i,j)
eS , with r

(i,j)
eA .

Then, function g(i,j) is given as follows:

g(i,j) = φ̂
(i,j)
A − φ

(i,j)
A (15)

at the instant leg j of module i

touches the ground

As a result, the oscillators form a dynamic system
that affect each other through the pulse-like interac-
tions caused by the feedback signals from the touch
sensor. Through the interaction, the oscillators gen-
erate gait patterns adaptive to the changing environ-
ment.

4 Numerical Analysis

Dynamic properties of the designed legged robot is
investigated through numerical simulation. Purpose of
the analysis is to verify that gait patterns adapted to
the variances of the environment can emerge by using
Eq. (14); That is to verify that oscillators which inter-
act through only the feedback signals from the touch
sensors at the tips of the legs can form a pattern of
phase difference adapted to the variances of the envi-
ronment. Physical parameters of the robot is shown
in Table 1.

Table 1
Body module

Width 0.13 [m]
Length 0.14 [m]
Height 0.08 [m]
Total Mass 8.0 [kg]

Legs
Length of link 1 0.075 [m]
Length of link 2 0.075 [m]
Mass of link 1 0.20 [kg]
Mass of link 2 0.10 [kg]



Walking velocity (parameter β) is selected as a pa-
rameter of variance of the environment. Initial condi-
tions are given as follows; A couple of oscillators on
each module are in the same phase and the phase dif-
ferences between every neighboring two modules are
all same. Each value of the joint angle of the leg is de-
termined by using the phase of the oscillator. All mod-
ules are in the statically steady states on a flat ground.
In the simulation, because of the left-right symmetry,
the robot has no roll motion and the legs of a mod-
ule move in the same phase. Then, in the following,
the suffix for leg is omitted. Simulation time is 250
steps. The results of the simulation are shown in Figs.
5 ∼ 7. Figure 5 shows the phase difference in a steady
state of the oscillators, where ∆Γi5 is a phase differ-
ence between the oscillators of module 5 and module
i. Hatched area in the figure expresses the area where
no steady state is obtained until the end of simulation
time. Figure 6 shows the gait pattern diagram. Solid
and blank lines express the supporting stage and the
swinging stage, respectively. When the duty ratio β is
large value, oscillators are divided into some groups in
terms of the phase (gait pattern #2). For example, at
β = 0.8, the oscillators are clustered into three groups,
(2,3,4), (1) and (5). At β = 0.75, also three groups but
another combination, (1,3), (2,4) and (5) is obtained.
On the other hand, when β is small value, all the phase
differences between the oscillators of neighboring two
modules are in the same (gait pattern #1). For exam-
ple, in the case of β = 0.66 this type of gait pattern
is obtained. Figure 7 shows the time history of phase
of the oscillator in Poincaré section. Poincaré section
is selected at the timing when the phase of module 5,
φ(5,j) returns to the same value.

From the above results, it may be revealed that the
phase pattern (gait pattern) change according to the
variance of the value of β (the variance of walking ve-
locity) and that there are some areas where no steady
phase pattern is obtained between the different two
phase patterns.
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Fig. 6: Gait pattern diagram
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Fig. 7: Time history of phase of the oscillator

5 Conclusions

In this paper, we proposed a controller of a multi-
pod locomotion robot based on CPG principle. Oscil-
lators are assigned at each leg and drive the periodic
motion of legs. The phases of the oscillators are reg-
ulated impulsively by the feedback signals from the
touch sensors at the tips of the legs. The time in
which the tip of the leg of a body module touches
the ground is a function of the positions and attitudes
of other body modules. That is, this type of system
of oscillators is the system of oscillators with impul-
sive mean field interactions. Numerically, this type of
system is revealed to form phase patterns adaptively
to the change of environment. But, the gait patterns
emerged are somewhat sensitive to the variations of
the values of the parameters. In order to improve the
stability of the system, the mutual interaction derived
from a certain potential function is to be added to the
system. The design of such interactions remains for a
future work.
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