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ABSTRACT

When the velocities of the motion required for a ma-
nipulator become faster, and the values of forces act-
ing on a subject are large, the elastic deformations
of the manipulator cannot be ignored in the trajec-
tory and force control. To develop a method of the
trajectory and force control of a flexible manipulator
is an important problem. In this paper, a trajectory
and force control of a flexible manipulator based on
inverse kinematics and inverse dynamics is proposed.
First, inverse kinematics and inverse dynamics of a
flexible manipulator are investigated in detail, and
then, a hierarchical controller based on inverse kine-
matics and inverse dynamics is proposed. The per-
formances of the proposed controller are verified by

numerical simulations.
1. INTRODUCTION

A manipulator is a mechanical system whose links

are connected through translational or rotational joints.

One of the tasks for a manipulator is to control forces
acting on a subject along to a given trajectory. In
order to establish the task, a force and trajectory
control is necessary. In the space engineering, this
class of technology is required for assembly of space
structures on an orbit or for release and retrieval of
an artificial satellite.

When the velocities of the motion required for a ma-
nipulator become faster, and the values of forces act-
ing on a subject are large, the elastic deformations
of the manipulator cannot be ignored in the trajec-
tory and force control. A manipulator whose links
has elastic deformations which cannot be ignored is

called a flexible manipulator, while a manipulator
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composed of links whose elastic deformations can
be ignored is called a rigid manipulator. It is nec-
essary for a space manipulator to be considered as
a flexible manipulator because the structural rigid-
ity of the links becomes lower through lightening its
weight. Then, to develop a method of the trajectory
and force control of a flexible manipulator is an im-
portant problem in order to use a space manipulator
well.

In this paper, a trajectory and force control of a flex-
ible manipulator is proposed. Generally, one of the
basic methods of motion control of a manipulator is
as follows; First, by using control inputs, the state
equations are linearized. And then, based on the
linearized state equations, linear feedback control is
adopted. A method in which the state equations
are linearized by compensating the nonlinear terms
with the use of the measured values of the state vari-
ables is called feedback linearization method. In this
method, a feedback control is executed based on the
linearized state equations. On the other hand, a
method in which the state equations are linearized by
inputing the control force which realizes the desired
motion is called feedforward linearization method.
In this method, the linearized state equations are
derived around the desired values of the state vari-
ables, then a feedback control is executed based on
the linearized state equations.

In the feedforward linearization method, inverse kine-
matics and inverse dynamics are important. When
the desired motion and the desired force acting on
the surface of an object through the manipulator are
given, inverse kinematics is to calculate all the state

variables according to the motion and the force are



calculated, and inverse dynamics is to calculate the
desired input forces or torques to realize the motion
derived through inverse kinematics.

For a rigid manipulator, inverse kinematics is derived
using kinematic relations between the state variables
and inverse dynamics is derived by using the state
equations. And then, the input forces or torques can
be realized by the actuators of the manipulator.
But, there are some difficulties in inverse kinemat-
ics and inverse dynamics of a flexible manipulator;
Inverse kinematics cannot be derived by only the
kinematic relations between the state variables. The
input forces or torques derived by inverse dynamics
cannot be realized by the actuators of the manipula-
tor either.

In this paper, a trajectory and force control of a flex-
ible manipulator based on the feedforward lineariza-
tion method. Inverse kinematics and inverse dynam-
ics of a flexible manipulator are investigated in de-
tail, and a hierarchical controller based on inverse
kinematics and inverse dynamics is proposed.

This paper is composed as follows; First, in section
2, the model of the manipulator system dealt with in
this paper is mentioned and the equations of motion
are derived. In section 3, the methods of inverse kine-
matics and inverse dynamics are derived. In section
4, the method of design of the controller is mentioned
and in section 5, the performances of the proposed

controller are verified by numerical simulations.
2. FORWARD MODEL

Consider a manipulator composed of two bodies, body
1 and body 2 (FIG. 1 ). Body 1 is put on a base with
a rotary joint (joint 1) and body 2 is connected to
body 1 with a rotary joint (joint 2). Motors are in-
stalled at the rotary joints, the axes of which are
perpendicular to a vertical plane. Body 1 is a rigid
rod and body 2 is an elastic beam, elastic defor-
mations of which occur in a plane perpendicular to
the axis of rotation. Introduce a set of unit vec-
tors {a(®} = {a(lo),ago)’ago)} fixed in an inertia
space, the origin of which coincides with joint 1.

(0)

Vector ay’ coincides with the axis of rotation and

vector a(20) is set downward. A set of unit vectors

{aV} = {agl), a(;), aél)} is introduced, the origin of
(1)

which coincides with joint ¢. Vector a;’ coincides

with the axis of rotation of joint 2 and vector agi) is
set toward the axis of body ¢. Using a set of unit
vectors {a(?}, a column matrix is introduced,

@] = [a{”,a”, af"] (1)

)

FIG. 1 Two body manipulator system

By introducing the angles of rotation from {a/)} to
{a)} about agj) axis as Qgij), transformation matri-
ces from {a?)} to {a(?} are defined by A(¥7),

The angular velocity vector of {a(?} to {a?)} is de-
fined by w()

W) = [a]Teli)

ST = [0,0,4)

(2)

The following quantities are introduced,
) = [@M]T+(M); a distance vector from joint 1
to joint 2.
r() = [a@]T+(?); a distance vector from joint 2
to the end effector.
p) =[a™)TpD); a distance vector from joint i
to any position in body 1.

The elastic deformation of body 2 is denoted by w(2)

w? = [a®]Typ®

w®T = 0, v (t, o), 0]

(3)

By using the finite element method, the elastic de-
(2) (2)

formation wy ' (¢, p;’) is expressed as

( Appendix )

w?(t, o) = B (e (1) (4)



A distance vector (1) from joint 1 to any point in

body 1 is expressed as

2 a7

REVRCY

and the velocity vector v(!) is expressed as

o = [aD]Ty())
5
WD = 10 (5)

where, 57 makes a cross product in [a(M)].
On the other hand, a distance vector z(?) from joint

1 to any point in body 2 is expressed as
22 — [a(2)]T$(2)

2@ = ACU0) L () 4 )

and the velocity vector v(?) is expressed as
v = [a®)Ty?
v =A@ 5(1),(10) (6)
AP + BO (o) (1)
A state variables z of the system are set to be

=105, 67, al?] (7)

The equation of motion for stable variables z are de-
rived as follows; The equations for variables 9&10) and
9§21) are derived from the equations of the angular
momenta of body 1 and body 2 about joint 1 and

joint 2, respectively.
% <ﬁ£1)Tv(1)>(1) n <ﬁ£1)T®(1O)TU(1)>(1)
= _;gl)Tf(l) _ (7;(1)T _ ,:gl)T)A(U)f(?)
) _ 402)22) ()
4 ( ﬁg2>Tv<z>>‘2) +{ ﬁgz>T@<zo>Tv<2>>‘2)

dt
= T F2) _ (GIT _2IT) 4(20) () 1 1(2) (g

where,

OO BN RO NS S RO P )
c c c m(z)
<x >0 = /*dm(i)

m() is mass of body i, f(i) = [aW])T @) and 7() =
[@]T7() are a force and a torque acting on body i
at joint i, and £(¢) = [@O]T f(¢) is a force acting on

the surface of the object through the end effector.

The forces f(1) and f(2) are expressed as

O = % <U<1>>(” 4 H00T <U<1>>(”
_m(MA00) 4 4 A(2) )
(10)
@ = % <U<2>>(2) 4 0T <U<2)>(2)
—m(® A0, 4 A(0) f(0)

where g is a gravitational constant. The equations of

(2)
2

motion for variables ., "’ are derived from the equa-

tions of elastic vibrations of body 2

% <B<2>TU<2>>(2) + < B(2)TUJ(20)TU(2)>(2)

=( B<2>T>(2) Ay g5 _ pe) 52

— BT (p(2)) 4(20) le) 4 E(2)TT§2) (11)

where, the second and third terms in the right hand
side of Eq. (11) express an elastic restoring force and

a structural damping force, respectively.

E®@=|1 0 --- 0 0

3. INVERSE MODEL

It is assumed that a desired trajectory :Z:Eie)(t) =
[a(o)]T:BEie) of the end effector and a desired force
fge)(t) = [a(o)]ngf) acting on the surface of an ob-
ject through the end effector are given. Inverse kine-
matics is to calculate the angles of rotation 9((1130)(t)
and 9%1)(75) and the elastic deformations @g)(t) cor-
responding to the desired trajectory and the desired
force. First, the distance vector @(¢) of the end ef-

fector from joint 1 is expressed as

2O = [aO]T4)
2O = AN 4 402)(2) (12)

Substituting the desired trajectory x&e) into Eq. (12),

we obtain the equation to determine the angles of ro-

(10) 9(21)

tation 6,7, 0,5 .

xfiel) = r(Mcos 92130) +7r(2) cos 9((;)0) (13)
:EE;Z) = rWgin 0&130) + ) gin 9((;0)

Next, substituting the desired force f(ge) and the an-

gles of rotation 0&130), 0&231) into Eq. (11), we obtain

the equation to determine the elastic deformations



A(2)( )

W
M@, + DO 55 4 { K _
( gs Cos 9(2 ) r§1)w(10)2 sin0(21)
—ril)w%m cos 9(21)) < BéQ)T >(2)
o2 ¢ BT ) S @)

n {( T2 4 (2 R2),(20)

+m@ 1) R(2 0050(21) (10)
m (MR gin 9((1231)@«)((1;0)2

202 ~(2
2 s (2)} @2

+r(2)(—f1(€) sin 9&230) + f2( cos 9(20))
mPR® g, cos 0((1230)} E®T (14)

M(?) =< Béz)TBéz) >(2) < E(?)Tc(Z) >(2)

where, C(?) = [< p(lz)Bg) > 0, ..., 0]
Equation (14) is a set of second order ordinary dif-
ferential equations and are appropriate to be formu-
lated as initial value problems with the initial condi-
tions

ﬁ}\gz) _ @;2)

t=0, =0

(2
However, since the coefficient matrix of @512) is not
positive definite, Eq. (14) is not well posed as an
initial value problem. Here, Eq. (14) is formulated

as boundary value problem with the boundary con-

ditions
t=0 ﬁ}g) =«
B _(2) (15)
t= tf Wy "~ = ﬂ

where, t; is a time interval of manipulation, and «,3
are values of elastic deformations in a steady state.
As boundary value problems, we can obtain stable
solutions numerically, but the elastic deformations
wfn) obtained have certain velocities at the beginning
of manipulation.

On the other hand, when the angle of rotation 9&130)(t)
and Ggl)(t) and elastic deformations @g)(t) are ob-
tained, inverse dynamics is to calculate the torques
Tc(ll) and 7(2)
the forces fd ( ) and f(2)( t) are calculated by Eq.
(10) with the variables g0 9(21) 17)\((122).

Which realize the desired motions. First,

d3
(2)
(2) _ (2) ~(20)T /_(2)
5= G )T e (o)
—m(2 A0 g 4 4(20) gle)
(16)
(1) (1)
(1 _ (1) ~(20)T /(1)
1= G ) e ()

2
“m(A(0) g 4 A(12) )

The torques Tc(ll)(t) and Tc(lz)(t) are calculated by us-
ing Egs. (8),(9),(11). But, when we calculate Tc(ll)(t)
and 7(52)(t) from Egs. (8),(9),(11), it is inconsistent.
In this paper, the least square solutions are used for

()7 (1).

7(52) _ <~(2)T (2) <~(2)T (20)T (2)>(2)

2)Tf(2) (2)T _ 2)T) (20)f§€)

)
(7

7—(51) = <”(1)T (1)> _+_<~(1)T (10)T (1)>(1)
(7

1)Tf(1) 1T _ 1)T) (12)fc(i?)

+A(12)T§2)
(17)

4. DESIGN OF A CONTROLLER

Consider a trajectory and force control of a manipu-
lator. A trajectory and force control is a manipula-
tion for the end effector of the manipulator to track
a certain trajectory, that is, to follow a surface of an
object and also to act a desired pushing force on the
surface of it during the manipulation.

The proposed controller is composed of two parts;
Feedforward and feedback terms. The feedforward
term is to compensate nonlinearity of the system dy-
namics and is calculated based on inverse kinematics
and inverse dynamics; Equation (17) is used.
Equation (17) includes some errors due to two fac-
tors. One factor is that Eq. (17) includes impulsive
forces at the moments of the beginning and the end
of manipulation because 1;)/\;2) # 0 as the solution
of Eq. (14). But when Eq. (17) is applied to the
feedforward controller, the components of impulsive
torques are neglected. Therefore, the motion of the
manipulator have some errors at the beginning and
the end of manipulation.

On the other hand, Eq. (17) is the least square so-
lution, therefore it is not the exact solution. The
errors of the solution cause some vibration modes
and degrade the performances of the controller.
The feedback term compensates the errors included
in the feedforward term with the model errors due to
neglect of vibration modes and that caused by dis-
turbances. A flexible manipulator become often to
be a non minimum phase system. As a result, the

feedback loop causes the system unstable. To pre-



vent it and to insure the robustness of the controller,
a direct feedback controller is an effective one. In this
paper, the feedback term of the proposed controller
is designed as the direct feedback one.

The input commands to the motors at the joints are

designed as follows;

Tc(l) = T;;) (18)
+51 {KDFéf + Kprey + K]F/efdt}(lE))
2 = 1) — Kubiag

+59 {KDFéf + Kprey + K]F/efdt}(20)

o= -
sy = () cos Hglo) + 73 cos 9;20)
o D cos 9&10)

Feedback gains are determined as follows; First, con-
sider deviations of variables fQ(e) Wy 5, Wy ,, and the

derivatives from the nominal values.

@Z,n = @in + Ai&?,n
1/172771 - @Q,n + A’L/l}zn (21)
1/132771 = 1/132771 + AT/I}QJL

er = fi) =1

Following vector is defined.
= (2)T ()T T
X=| Aw AW ef esdt (22)

Substituting Eq. (21) into Egs. (8), (9), (11), and

linearizing them following equations are obtained.

H X + H,X =0 (23)
where,
[ <« B@TR(2) ~(2) pi2) Gg@T pEET
O I 0 0
H =
R S a b
| < p§2)3<2> >(2) 0 e f
[ o K'® 0 cEXT
-1 0] 0 0
H2 =
0 d 0 c
| 0 wém) < p(12)B(2) >2) ¢ g
a=—s1Kpr, b=-s(1+Kpp)
c=—5.Krp

d=— [7«(1) sin 00V w(*) < B >

+T(1)w§20)2 < p(12)B >(2)]

e=—s59Kpr, f=-s:(14+Kpp)

g=—5Kr

R=<p¥B >® 47 cos92) < B2 5(2)
S = —2r(M,(20) gip 9(21)  B(2) 5(2)

D'® =D+ K,E?TE®?)

K2 — g2 _ w§20)2 < B@TR(2) 4 (2)

Based on Eq. (23), feedback gains Kpp, Kpp, K;p

and K, are determined appropriately.
5. NUMERICAL SIMULATION

Here, the controller proposed in section 4 are veri-
fied numerically; The desired trajectory of the end

effector :B((;) and the desired force fz(ie) acting on the

(1)

surface of the object are given and the torques ¢/,
7'6(2) which realize the desired motion are calculated
on the basis of the inverse models proposed. Then,
the equations of motion of the manipulator are solved
numerically where the torques obtained are used as
the input torques, and the force f(¢) acting on the
surface are compared with the desired force acting
on the surface. The values of parameters of the ma-

nipulator are listed in TABLE 1.

TABLE 1

| | Link 1 | Link 2

Length [m)] 0.500 0.550
Mass [kg] 8.00 0.240
Bending Stiffness[Nm? - 0.480

Damping Ratio - 5.00 E-02

Natural Frequency [Hz]

1st mode - 4.8004

2nd mode - 19.8850

3rd mode - 49.0634

4th mode - 102.8703

5th mode - 174.6451

6th mode - 271.9208

Body 2 is modeled as four finite elements for the
inverse models (N = 4). The desired trajectory of
the end effector and the desired force acting on the

surface are given as follows,

2 = 005 [m]
% = 20 [N]



2 = 0.7-0.5(—252i"" + 13860 — 3080°

+3465t% — 1980¢" + 462¢°) [m]

where, t = t/tg, t; = 2.0 [sec].
Figure 2 shows stick diagram of the manipulator.
Figures 3 ~ 6 show the forces acting on the surface

of the object through the end effector.
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FIG. 2 Stick figure of the manipulator
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FIG. 3 The force f(¢) acting on the surface

(with initial elastic deformation velocity,

feedforward only)
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FIG. 4 The force f(¢) acting on the surface

(without initial elastic deformation velocity,

feedforward only)
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FIG. 5 The force f(¢) acting on the surface

(without initial elastic deformation velocity,

feedback only)

3.0

251

2.0

15+

10

Reaction force [N]

05

00 1 1 1 1 1 1 1 1 1
00 02 04 06 08 10 1.2 14 16 18 20
Time [sec]
FIG. 6 The force f(¢) acting on the surface

(without initial elastic deformation velocity,

proposed controller)

Figure 3 indicates the feedforward torque can con-
trol the reaction force accurately if the initial elas-
tic deformation velocities are given. But from fig-
ure 4, we can find that if the initial elastic defor-

mation velocities are not given(it has more reality),



the feed forward controller only causes some vibra-
tions at the beginning of the manipulation. On the
other hand, from figure 5, we can find that feedback
controller only cannot control motion of the manipu-
lator. Finally, from figure 6, the proposed controller
can suppress the excitation of vibration and has a
good performance for a trajectory and force control

of a manipulator.
6. CONCLUSION

In order to establish a trajectory and force control
of a manipulator, the controllers have to generate
input torque commands to the motors at the joints
for the end effector to realize the desired trajectory
and pushing force. In such cases, we have to consider
three difficulties to design the controller.

The first one is to deal with the nonlinearity of dy-
namics of the manipulator. The second one is ex-
citation of vibration in the transition period. The
last difficulty is to cancel the disturbance during the
manipulation and to control the force acting on the
object. To deal with these difficulties, we proposed a
hybrid controller composed of feedforward and feed-
back controllers. Feedforward commands are gen-
erated by inverse kinematics and inverse dynamics.
The performances of the proposed controller are ver-

ified by numerical simulations.
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A Appendix

Body 2 is divided into N finite elements where are
numbered as 1,2, ---,N from joint 2 to the end effec-
tor. The nodes are also numbered as 0,1,---,N from
joint 2 to the end effector. An elastic deformation in

(2)

element n,w,"’ is expressed as

2,n
Element 1
2 1
wé?l)(t7pg2)) = [xn - 7332 + ﬁxi )
3 2 1 1 wg’?(t)
wi (1)

T =

| =

Element 2 ~ N — 2

w) (t,p") =

_ 4T
0 — ixQ + 33:3
2, 1, w2,n71(t)
i — (2
In lx" + 12 Tn 2(,n)—1(t) 25
3 2 (2) ¢ ( )
T 5
!
1 5 1 3 w2,n (t)
—=x, + 5T
i A A




0 ;O<p(12)<(n—1)l
Ty = p§2> —(n=1)1 ;(n—-1Il< pg2) <nl
0 inl < p?)
Element N — 1
(2)
w t
w82 = ey ] | 320 | (e
w t
2,N—1
where,
0 0 <P < (N =2)
v =4 AP —(N-2)1 ;(N-2)<p?<R®
0 (RO < pf?
@éi{ : elastic deformation of element n at node n
lﬁ;(,i) : angle of rotation of element n at node n

At nodes 0 and N, we may set the condition that
o) =a) =0

Then, an elastic deformation in body 2 is expressed

as
w8, 07) = B 8P )  (27)
0
B2 — B§2)
0
Béz) = I:/b\:] ’ Zl ) le s T ZN—Q ) /b\IJV—Q ) /b\IJV—l:I
a7 = @)Y, e, @)Y

Ty Wy N 95 Wy N o5 Wy N g

~(2) —1(2) 1(2) ]



