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Abstract—This paper proposes the locomotion con-
trol system for a multi-legged locomotion robot. The
proposed control system is composed of leg motion
controllers and a gait pattern controller. The leg
motion controllers drive the actuators of the legs by
using local feedback control. The gait pattern con-
troller is composed of non linear oscillators. The
oscillators tune the phases through the mutual in-
teractions and the feedback signals from the touch
sensors at the tips of the legs. Various gait patterns
emerge through the mutual entrainment of these os-
cillators. As a result, the robot with the controller
walks stably by changing its gait patterns in a wide
range of locomotion speed. Moreover, it continues
to walk even if a part of leg controller breaks down.
The performance of the proposed control system is
verified by numerical simulations.

Keywords— Locomotion control, multi-legged loco-
motion robot, central pattern generator model.

I. Introduction

Locomotion is one of the basic functions of mobile
robot and the leg mechanism is one of the strate-
gies for accomplishing locomotion. The advantage
of legged locomotion is that legs can move on a
rough terrain, while the disadvantage of legged lo-
comotion is that each leg supports the body discon-
tinuously, which results in degradation of stability
of walk. The multi-legged locomotion overcomes
the difficulty, but requires complex body mecha-
nisms. The control system for this class of mechan-
ical system designed by the modern control the-
ory has several drawbacks; since the controller is
designed based on the mathematical model, it be-
comes to be correspondingly complex and is unable
to adapt to a changing environment. The walking
motion of an animal solves these problems; during a
walk, a lot of joints and muscles are organized into
a collective unit to be controlled as if it has fewer
degrees of freedom but to retain the necessary flex-
ibility for a changing environment. Biological in-
spired controllers for legged locomotion robot have
been studied[1]. Cruse, H. et al. have proposed a
controller, walknet, for six-legged walking based on
the investigations of the stick insect Carausius mo-

rosus[2]. The proposed controller is a distributed
one with local controllers interacting with their im-
mediate neighbors. The controller ensures proper
spatiotemporal coordination among the legs, taking
account of the physical properties of the system by
the sensory feedback. It is widely believed that ani-
mal locomotion is generated and controlled, in part,
by a central pattern generator (CPG)[3]. The CPG
is a neuronal ensemble capable of producing rhyth-
mic output in the absence of sensory feedback or
brain input, but is highly sensitive to sensory feed-
back and external control from the brain. The con-
trollers for legged-locomotion have been proposed
based on a CPG model. We have also proposed
the controller for a quadruped locomotion based on
a CPG model[4]. The oscillators are assigned at
each leg and drive the periodic motion of legs. The
phases of the oscillators are controlled by the signals
of the touch sensors at the tips of the legs. It is con-
firmed by the numerical simulations and the hard-
ware experiments that the robot changes its gait
pattern adaptively to variance of the environment
and establishes a stable locomotion.

This paper will apply the proposed controller to a
multi-legged locomotion robot, ten legged locomo-
tion robot. A robot is five module. A module has
two legs. The aim of the paper is to demonstrate
that the robot with the proposed controller show
considerable adaptability in the sense that the robot
changes its behavior in accordance with changing
environmental conditions, that is, the robot changes
its gait pattern according to a speed of walk during
a straight walking. And beyond this, the robot is
able to walk even if a part of leg controller breaks
down.

II. Equations of Motion

We consider the multi-legged locomotion robot
shown in Fig.1. The robot has 5 body modules
and each body has two legs. A module has two
legs. Each leg is composed of two links which
are connected to each other through a one degree



of freedom rotational joint and connected to the
body module through a one degree of freedom ro-
tational joint. The body modules are connected to
each other through a three degree of freedom ro-
tational joint. The inertial fixed coordinate sys-
tem and the first body module fixed coordinate
system are defined as [a0] = [a01, a02, a03] and
[a1] = [a11, a12, a13],respectively. Axes a01 and a03

coincide with the direction of locomotion and verti-
cally upward direction, respectively. Axes a11 and
a13 coincide with axes a01 and a03, respectively.
Body modules are numbered from 1 to 5, as shown
in Fig.1 and left and right legs are numbered as leg
1 and leg 2, respectively. The joints and the links
of each leg are numbered as joint 1 and 2, and link
1 and 2 as shown in the figure. The position vector
from the origin of [a0] to the origin [a1] is defined
as r0 = [a0]r0. The angular velocity vector of [ai]
to [ai−1] is defined by ωi = [ai]ωi(i = 1, · · · , 5).
We define θi as the components of 3-1-2 Euler angle
from [ai−1] to [ai]. We also define θ

(j)
ik as the joint

angle of link k of leg j of module i.

Joint2
link1

link2

Module1

Module2

Module5
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Fig. 1. Schematic model of a multi-legged locomotion robot

The state variable is defined as follows;

qT = [ r0m θim θ
(j)
ikm ] (1)

i = 1, · · · , 5, j = 1, 2,

k = 1, 2, m = 1, 2, 3

Equations of motion for state variable q are de-
rived using Lagrange’s equation of motions as fol-
lows;

Mq̈ + H(q, q̇) = G +
∑

(τ (j)
ik ) + Λ (2)

where M is the generalized mass matrix and H(q, q̇)
is the nonlinear term which includes Coriolis forces
and centrifugal forces. G is the gravity term. τ

(j)
ik is

the input torque of the actuator at joint k of leg j
of module i. Λ is the reaction force from the ground
at the point where the tip of the leg makes contact.

III. Locomotion control

The control system is composed of leg motion
controllers and a gait pattern controller(Fig.2). The
leg motion controllers drive the joint actuators of
the legs so as to realize the desired motions com-
manded by the gait pattern controller. The gait pat-
tern controller is composed of non linear oscillators
corresponding to each leg. The gait pattern con-
troller receives the commanded signal of the nomi-
nal gait pattern as the reference. It also receives the
feedback signals from the touch sensors at the tips
of the legs. A modified gait pattern is generated
from the nominal gait pattern through the phase
dynamics of the oscillators, which is served to the
leg motion controller as the commanded signal

Commanded

Nominal gait pattern

Touch sensor signal

leg motion
controller

gait pattern
controller

trajectory

Fig. 2. Control system

A. Design of gait

A.1 Design of leg motion

First, we design the nominal trajectories of the
tips of the legs. We define the position of the tip
of the leg where the transition from the swinging
stage to the supporting stage as the anterior ex-
treme position (AEP) and the position where the
transition from supporting stage to the swinging
stage as the posterior extreme position (PEP). The
nominal PEP and the nominal AEP are expressed as
η̂
(j)
iP , η̂

(j)
iA in the coordinate system [ a0 ]. The nomi-

nal trajectory for the swinging stage is designed as a
closed curve η̂

(j)
iSw which involves the points η̂

(j)
iA and

η̂
(j)
iP , and the nominal trajectory for the supporting

stage is designed as a straight line η̂
(j)
iSp which also



involves the points η̂
(j)
iA and η̂

(j)
iP .

These trajectories are given as functions of the
phases of the oscillators. The state of the oscillator
(i, j), oscillator on leg j of module i, is expressed as
follows;

z
(j)
i = exp(jφ

(j)
i ) (3)

where z
(j)
i is the state of the oscillator and φ

(j)
i is

the phase of the oscillator.
The nominal phases φ̂

(j)
i of the oscillator (i, j) at

AEP and PEP are determined as follows;

φ̂
(j)
i = φ̂

(j)
iA at AEP, φ̂

(j)
i = 0 at PEP (4)

The nominal trajectories η̂
(j)
iSw and η̂

(j)
iSp are given

as functions of the nominal phase φ̂
(j)
i of the oscil-

lator as

η̂
(j)
iSw = η̂

(j)
iSw(φ̂(j)

i ) (5)

η̂
(j)
iSp = η̂

(j)
iSp(φ̂(j)

i ) (6)

We use one of these two trajectories alternatively
to generate the nominal trajectory η̂

(j)
i of the tip of

the leg as follows(Fig.3);

η̂
(j)
i (φ̂(j)

i ) =

{
η̂
(j)
iSw(φ̂(j)

i ) 0 ≤ φ̂
(j)
i < φ̂

(j)
iA

η̂
(j)
iSp(φ̂

(j)
i ) φ̂

(j)
iA ≤ φ̂

(j)
i < 2π

(7)
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Fig. 3. Nominal trajectory of the leg

Then, we set the nominal phase dynamics of the
oscillator as follows;

˙̂
φ

(j)

i = ω̂ (8)

The nominal angular velocity ω̂ of the oscillator and
the nominal locomotion velocity v̂ are given as fol-
lows;

ω̂ = 2π
1 − β̂

(j)
i

T̂Sw

(9)

v̂ =
1 − β̂

(j)
i

β̂
(j)
i

Ŝ
(j)
i

T̂Sw

(10)

where Ŝ
(j)
i is the nominal stride of leg j of module

i which is given as

Ŝ
(j)
i = η̂

(j)
iA1 − η̂

(j)
iP1 (11)

,T̂Sw is the nominal time of the swinging stage,
which is assumed to be constant and β̂

(j)
i is the

nominal duty ratio of leg j of module i, the ratio
between the nominal time for the supporting stage
and the period of one step of the nominal locomo-
tion, which is given by

β̂
(j)
i = 1 − φ̂

(j)
iA

2π
(12)

A.2 Design of gait pattern

Then, we design the gait patterns, the phase re-
lations of oscillators. There are many gait patterns.
Figure 4 shows the typical examples in the case
where two oscillators on a same module oscillate
in a same phase, where L∗ means legs of module
∗ and the thick lines indicate the footprints of the
legs. Pattern #1 is in phase pattern in which all the
oscillators oscillate in a same phase and Pattern #2
is metachronal wave pattern in which the phase dif-
ferences of oscillators on adjacent bodies are same.

L1
L2
L3
L4
L5

Pattern #1 (In phase pattern)

Pattern #2 (Metachronal wave pattern)

L1
L2
L3
L4
L5

time

time

Fig. 4. Gait pattern(Foot print)

B. Control of gait

B.1 Leg motion controller

The angle θ̂
(j)
ik of joint k of leg j of module i is

derived from the geometrical relationship between



the trajectory η̂
(j)
i (φ̂(j)

i ) and is written as a function
of phase φ̂

(j)
i as follows;

θ̂
(j)
ik = θ̂

(j)
ik (φ̂(j)

i ) (13)

The commanded torque at each joint of the leg
is obtained by using local PD feedback control as
follows;

τ
(j)
ik = KPk(θ̂(j)

ik − θ
(j)
ik ) + KDk( ˙̂

θ
(j)

ik − θ̇
(j)
ik ) (14)

where τ
(j)
ik is the actuator torque at joint k of leg j

of module i, and KPk, KDk are the feedback gains,
the value of which are common to all joints of all
legs.

B.2 Gait pattern controller

We design the phase dynamics of the oscillators
as follows;

φ̇
(j)
i = ω̂ + g

(j)
1i + g

(j)
2i (15)

where g
(j)
1i is the term which is derived from the in-

teractions with other oscillators and g
(j)
2i is the term

caused by the feedback signal of the touch sensor at
the tip of the leg.

Function g
(j)
1i is designed in the following way: We

define the potential function as

V (φ(j)
i , γ) =

1
2

K
∑

i

(φ(2)
i − φ

(1)
i − γ)2 (16)

Function g
(j)
1i is then derived from the potential

function V as follows;

g
(j)
1i = −(−1)jK(φ(2)

i − φ
(1)
i − γ) (17)

Function g
(j)
2i is designed in the following way:

Suppose that φ
(j)
iA is the phase of leg j of module i

at the instant when leg j of module i touches the
ground, and η

(j)
iA is the position of leg j of module

i at that instance. Then, when leg j of module i
touches the ground, the following procedure is un-
dertaken.

1. Set the phase of the oscillator for leg j of mod-
ule i from φ

(j)
iA to φ̂

(j)
iA .

2. Switch the nominal trajectory of leg j of mod-
ule i from the swinging trajectory η̂

(j)
iSw to the

supporting trajectory η̂
(j)
iSp.

3. Replace parameter η̂
(j)
iA in the nominal trajec-

tory η̂
(j)
iSp with η

(j)
iA .

Function g
(j)
2i is written with a mathematics as fol-

lows;

g
(j)
2i = (φ̂(j)

iA − φ
(j)
iA )δ(t − t

(j)
hsi) (18)

where t
(j)
hsi is the time when leg j of module i touches

the ground.
The designed phase dynamics becomes a dy-

namic system where the oscillators affect each other
through two types of interactions; one is contin-
uous interactions derived from the potential func-
tion V , and the other is the pulse-like interactions
caused by the feedback signals from the touch sen-
sors. Through these interactions, the oscillators can
generate phase patterns adapted to the change of
the environment. The proposed controller has the
distinctive feature in utilizing term g2, which leads
the system to rely heavily on the sensory feedbacks,
and this makes the system adaptive to changing en-
vironments. The controller proposed by Cruse et
al.[2] has the same feature, but their controller has
two nets, the swing net and the stance net, and
changes them by sensory input.

IV. Numerical Analysis

Table I shows the physical parameters of the
robot which are used in the numerical analysis.

TABLE I

Physical parameters of the robot

Length of Body 0.13 [m]
Mass of Body(Module 1,5) 0.25 [kg]

Mass of Body(Module 2,3,4) 0.50 [kg]
Length of Link 1,2 0.07 [m]
Mass of Link 1,2 0.050 [kg]

Numerical simulations are carried out under the
condition that the nominal stride Ŝ

(j)
i is set to be

0.03 [m], and the band width of joints 1,2 is set to
be 2 [Hz]. The term g

(j)
1i is designed so that the

two oscillators on body j oscillate in phase, that is,
phase difference γ is set to be zero and feedback
gain K is set to be sufficiently large. The nominal
duty ratio β̂ is selected as a parameter which ex-
presses the change of the environment, the speed of
locomotion. The nominal time T̂Sw of the swinging
stage is set to be 0.3 sec. As a initial conditions
in the phase dynamics, the phase difference of two
adjacent oscillators is set to be 2π/5.

The performance of the control system is evalu-
ated by the energy consumption Ec of actuator and
realized locomotion velocity. The energy consump-
tion Ec is defined as

Ec =

∫ t+Tβ

t

∑
i,j,k

τ
(j)
ik2ω

(j)
ik2 dt

Sβ
(19)

where Sβ is the distance of locomotion during time
Tβ.



As a comparison of performance, a locomotion
control system with a fixed gait pattern is analyzed.
As the fixed gait pattern, a metachronal wave pat-
tern is used where the phase difference of two adja-
cent oscillators is set to be 2π/5.

Figure 5 shows the time history of parameter β̂
where the horizontal line is the number of steps.
First, parameter β̂ is decreased and then is in-
creased. That is, first the robot walks fast and
then slow. Figure 6 shows the performance of the
controllers, the locomotion velocity and the energy
consumption as the function of parameter β̂. In
the figures, ”Prop. ac.” and ”Prop. dec.” mean
the case where the locomotion velocity of the robot
with the proposed controller is increased and de-
creased, respectively, ”Fix.” means the controller
with a fixed gait pattern and ”Theor.” means the
nominal locomotion velocity based on Eq.(10). In
Fig.6(a), the locomotion velocities of the proposed
controller are on the nominal velocity curve in a
wide velocity range, while the locomotion velocity
of the controller with a fixed gait pattern is un-
der the nominal velocity curve in the higher veloc-
ity range. In Fig.6(b) the energy consumption of
the proposed controller is constant in a wide ve-
locity range, while the energy consumption of the
controller with a fixed gait pattern increases in the
higher velocity range. From these figures, it may
be suggested that the robot controlled by the pro-
posed controller can walk without stick or slip in a
wide velocity range, while the robot controlled by
the controller with a fixed gait pattern cannot walk
smoothly in a higher velocity range.

Figures 7 and 8 show that the gait patterns of the
robot with the proposed controller change according
to the locomotion velocity. This clarifies that the
good performance of the proposed controller lies in
the fact that the proposed controller can adapt the
gait patterns to the environments, while the con-
troller with a fixed gait pattern cannot adapt the
gait pattern to the environment.

Lastly, the degradation of performance is ana-
lyzed when a part of the controllers is broken down.
The failure of the controllers is assumed so that the
leg motion controllers of module # stops to work
and then, the legs of the module move freely. As a
result, the oscillators of the module lose the feed-
back signals and oscillate freely.

Figure 9 shows the fall of the locomotion veloc-
ities where ”normal” and ”failure (L#)” mean the
normal state of the controller and the failure state of
the controller of the legs of module #, respectively.
The degradation of performance is suppressed low
in the case of the proposed controller compared with
the case of the controller with a fixed gait pattern.

Figure 10 shows the changes of the phase differ-
ence of the oscillators with the oscillator of module 5
where the arrow indicates the time when the failure
occurs. From the figure, it is revealed that degrada-
tion of performance is suppressed by changing the
phase pattern of the oscillators.

V. Conclusions

We proposed a control system for a multi-legged
locomotion robot composed of leg motion con-
trollers and a gait pattern controller. The leg mo-
tion controller drives the actuators at the joints of
the legs by use of local high gain feedback with the
commanded signal from the gait pattern controller.
Whereas with the mutual interactions and feedback
signals from the touch sensors at the tips of the legs,
the gait pattern controller modulates the nominal
gate pattern adaptively and serve them to the leg
motion controller as the commanded signals. As a
result, the robot with the proposed controller can
adapt to changing environments. In the following
paper, modifying the system so that the modules
are connected each other by the joints with three
degrees of freedom of rotation, we will analyze the
performances of the system during curve walking
and walking on highly irregular terrain.
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